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Application of machine learning approaches in the analysis of mass
absorption cross-section of black carbon aerosols: Aerosol composition
dependencies and sensitivity analyses

Andrew A. May and Hanyang Li�
aDepartment of Civil, Environmental, and Geodetic Engineering, The Ohio State University, Columbus, Ohio, USA

ABSTRACT
Physics-based models typically require an in-depth understanding of a phenomenon and assump-
tions of the underlying process(es), which are often hard to obtain in practice, whereas data-driven
machine learning models learn the structure and patterns in the training data without any prior
theoretical assumptions and then use inference to develop useful predictions. A novel machine
learning-based algorithm has been previously developed for the prediction of black carbon mass
absorption cross-section (MACBC) and applied to a variety of different atmospheric environments. In
contrast to light scattering theories which require assumptions about the underlying physics, this
algorithm uses time-series data of aerosol properties to estimate the temporally varying MACBC at
870nm. Here, we analyze our algorithm and discuss the influence of aerosol optical properties
(such as Ångstr€om exponents and single scattering albedo) and chemical composition on the
model outputs and the associated accuracy. Additionally, we conduct sensitivity analyses on our
models to understand how the predictions change in response to different sets of input variables.
Our support vector machine (SVM) for regression model is the least sensitive to variations in the
input variables, although all models tend to exhibit a degradation to their accuracy when scattering
Ångstr€om exponents are less than one.
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Introduction

Some of the first applications of machine learning in the
field of aerosol science were related to the classification of
single-particle mass spectrometer data (Zelenyuk et al.
2006; Murphy, Middlebrook, and Warshawsky 2003;
Phares et al. 2001; Song et al. 1999). Over time, machine
learning for aerosol classification has remained popular,
for example, differentiation among bacteria, fungal spores,
and pollen (Ruske et al. 2017); and classification of air-
borne metal particles (Davari and Wexler 2020).
However, the emergence of data science and analytics has
led to a growth in the popularity of other machine learn-
ing applications. These techniques have subsequently
been applied to the prediction of aerosol microphysics
(Zheng et al. 2021; Hughes et al. 2018) and cloud con-
densation nuclei concentrations (Nair and Yu 2020); the
improvement of remote sensing retrievals (Zeng et al.
2020; Qin et al. 2018; Ma et al. 2011); the calibration or

interpretation of low-cost particle sensor data (McFarlane
et al. 2021; Patra et al. 2021; Si et al. 2020; Lim et al.
2019); the prediction of ambient black carbon (BC) con-
centrations (Fung et al. 2021; Abu Awad et al. 2017); and
the correction of filter-based absorption photometer data
(Kumar et al. 2022).

Our interest herein is black carbon (BC). Not only is
BC relevant to human health, it has an important role in
the climate system due to its ability to absorb solar radi-
ation and to interact with clouds (Bond et al. 2013;
Ramanathan and Carmichael 2008; Hansen, Rosen, and
Novakov 1984). Traditionally, these phenomena have
been modeled using physics-based light-scattering models
within Earth system models (Wang et al. 2014; Myhre
et al. 2013; Koch et al. 2009; Schulz et al. 2006), and these
models require aerosol complex refractive indices, mixing
state, size, and morphology as input variables (Liu et al.
2020; Forestieri et al. 2018; Zanatta et al. 2018; Garc�ıa
Fern�andez, Picaud, and Devel 2015; Lack and Cappa
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2010). These light-scattering models may have inherent
uncertainties due to the necessary assumptions about the
aerosol properties. However, the use of these models is
necessary, because BC emissions are often mass-based
(McDuffie et al. 2020; Bond et al. 2013), while the obser-
vations used to evaluate these Earth system models are
often absorption-based. Even if one assumes a mass-
absorption cross-section (MAC) to convert absorption to
mass, values of MAC have been reported as variable
across both time and space (Mbengue et al. 2021; Ohata
et al. 2021; Yuan et al. 2021; Cho et al. 2019; Gyawali
et al. 2017; Zanatta et al. 2016; Nordmann et al. 2013;
Kondo et al. 2011; Moosm€uller et al. 1998).

Recent efforts have applied machine learning to predict
BC optical properties (Li and May 2020a; Luo et al. 2018)
as an alternative to physics-based models. The inherent
value of a viable statistical model for the prediction of BC
optical properties is the potential to replace those physics-
based light-scattering models, as the physics-based models
may requiremajor assumptions that are not constrained by
empirical observations. In our previous work (Li and May
2020a), we presented the development and evaluation of
regression and machine learning models for the prediction
of the mass absorption cross-section of black carbon
(MACBC, m

2 g�1) at 870nm. Briefly, these models use
time-series data to predict temporal variations in MACBC

using Python code that we have made publicly available (Li
and May 2020b). Specifically, the models incorporate
multi-wavelength aerosol light-absorption coefficients
(Babs, Mm�1) and multi-wavelength aerosol light-scatter-
ing coefficients (Bscat, Mm�1) along with information
related to the particle number and volume distributions.

The challenge with all statistical models as candidates
for replacing physics-based models is that they are inher-
ently stochastic; therefore, they may struggle to represent
physics-based deterministic problems, especially when
extrapolation away from the training data occurs.
However, if we can probe the limits of utility for a given
statistical model, we can understand when a model will be
inappropriate for use, potentially leading to subsequent
improvements. In this study, we explore factors that may
limit our models’ generalizability, namely, changes in aero-
sol composition and missing input data. In a separate
companion study, we further explore how our models
compare to physics-based models which explicitly account
for aerosol complex refractive indices, mixing state, and
morphology (Li and May 2022).

Methodology

Our approach to develop our regression and machine
learning models is described in detail in Li and May

(2020a). We provide a brief summary of this
approach here.

Dataset description

We applied various regression and machine learning
techniques to existing datasets. This included publicly
available data from two US Department of Energy
(DOE) Atmospheric Radiation Measurement (ARM)
field campaigns: the Two-Column Aerosol Project
(TCAP), which was conducted near Cape Cod, MA,
US during 2012� 2013; and the Cloud, Aerosol, and
Complex Terrain Interactions (CACTI) project, which
was conducted near Cordoba, Argentina during
2018� 2019. We also included our data from the US
National Oceanic and Atmospheric Administration
Fire Influence on Regional to Global Environments
Experiment (FIREX) that were collected at the US
Forest Service Fire Science Laboratory in Missoula,
MT, US in 2016.

Model inputs

For TCAP and CACTI, each modeling technique had
the objective of predicting a time series of MACBC

using time series of multi-wavelength Babs, multi-
wavelength Bscat, and parameterizations of both par-
ticle number and particle volume size distributions as
inputs, while for FIREX, we used fire-integrated val-
ues. We focused on Babs measured by filter-based
absorption photometers, as these are more common
in global atmospheric measurements than photoacous-
tic spectrometers. We corrected the Babs data from
these instruments using Li, McMeeking, and May
(2020), which performs well both for ambient data
collected at the US DOE ARM Southern Great Plains
user facility and for our FIREX data. Our Bscat data
were obtained from nephelometer measurements, and
the particle size distributions were obtained from
either a combination of a TSI Scanning Mobility
Particle Sizer (SMPS) and a TSI Aerodynamic Particle
Sizer (APS) or a stand-alone SMPS. Empirical values
of MACBC at 870 nm were derived from Babs at
870 nm and observed BC mass concentration (MBC,
mg m�3) from a Droplet Measurement Technologies
Single Particle Soot Photometer (SP2), following
Equation (1):

MACBC 870 nmð Þ ¼ Babsð870 nmÞ
MBC

(1)

where we extended Babs to 870 nm using empirically
derived absorption Ångstr€om exponents (AAE) from
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the multi-wavelength, filter-based absorption photo-
meters measurements (i.e., Babs � k-AAE).

Modeling approach

The specific modeling techniques, considered in both
Li and May (2020a) and here, included multiple linear
regression using ordinary least squares (OLS); stepwise
regression (both forward and backward); least absolute
shrinkage and selection operation (LASSO); support
vector machine for regression (SVM); artificial neural
network (ANN); and one-dimensional convolutional
neural network (CNN). We focus on the SVM for
regression results in the main text, but we provide
results for the other models in the online supplemen-
tal material.

The data were pre-processed using three separate
modules: (1) to apply the correction algorithm from
Li, McMeeking, and May (2020) to the Babs data; (2)
to merge the SMPS and APS data and to establish size
distribution parameterizations; and (3) to adjust Babs
and Bscat to the “standard” wavelengths (467, 528, and
652 nm) using scattering Ångstr€om exponents (SAE)
and AAE, if needed. We conducted our data analysis
using Python (version 3.7.5) for Windows in an
“Anaconda” environment. We evaluated model per-
formance using various metrics. This included the
coefficient of determination (R2) and mean square
error (MSE), as well as fractional bias and fractional
error (Morris et al. 2005).

While we also included discussion using the Bond,
Anderson, and Campbell (1999) correction algorithm,
as updated by Ogren (2010), for Babs in Li and May
(2020a), we only focus on the corrections based on Li,
McMeeking, and May (2020) within the present work,
because the Li, McMeeking, and May (2020) correc-
tion algorithm yielded campaign-average MACBC val-
ues ranging between roughly 2.9� 3.9 m2 g�1. This
range is lower than, yet roughly consistent with, the
expected MACBC of 4.7 m2 g�1 at 870 nm, based on
the standard assumption of MACBC ¼ 7.5 m2 g�1 at
550 nm from Bond and Bergstrom (2006) using an
assumed AAE of 1, as in Lack and Langridge (2013).
Conversely, the campaign-average MACBC values for
the Bond, Anderson, and Campbell (1999) correction
algorithm, as updated by Ogren (2010), ranged from
7.5 to 7.8 m2 g�1 at 870 nm (i.e., AAE is zero).

Results and discussion

We have presented a quantitative, statistical evaluation
of our models in Li and May (2020a). Briefly, each

model had similar performance between the training
and test datasets (both from TCAP), but the quality of
the performance with the training and test data varied
among the models (cf., Table 4 and Figure 3 in Li and
May [2020a]). Moreover, all models had “excellent”
performance based on the fractional bias and frac-
tional error criteria established by Morris et al. (2005)
for the TCAP data (cf., Figure 3 in Li and May
[2020a]). For the two independent validation datasets
(CACTI and FIREX), the quality of the performance
degraded for all models; R2 decreased by at least a fac-
tor of two (from between �0.4 and �0.8 to <0.3),
and MSE increased by roughly a factor of 10 (from
�0.2 to �2) for all models. Moreover, the mean frac-
tional error increased (from �0.1 to >0.3) for both
datasets, while the fractional bias only increased for
the CACTI data (from �0 to �0.1). Despite these
limitations, all models performed better than the
standard assumption (representing a constant value of
MACBC) for both the time-series ambient data and
the fire-integrated biomass burning data. Finally, we
recommended that the SVM model should be used to
calculate time series of MACBC for long-term field
monitoring sites.

Several factors affecting model performance were
alluded to but not fully explored within our previous
work. One such effect was differences in aerosol com-
position that may exist when the models either under-
or over-predicted the empirical values in the MACBC

time series (cf., Figure 1c in Li and May [2020a]).
Moreover, we wrote that “SVM is the least sensitive to
variations in empirical limitations (e.g., if only a single
wavelength of Babs or Bscat is available, if only an APS
is available)…” in Li and May (2020a). Here, we pre-
sent how different aerosol composition affects the per-
formance of our models and demonstrate the
sensitivity of our models to missing input variables.

Influence of aerosol composition

To explore how different aerosol composition influen-
ces our models, we consider both direct measurements
and inferences based on aerosol optical properties in
our analysis. Due to differences in data availability, we
separate this discussion into ambient aerosols and
laboratory-generated biomass burning aerosols.

Ambient aerosols
For the two field campaigns studying ambient aerosols
(TCAP and CACTI), there is available Aerodyne
Aerosol Chemical Speciation Monitor (ACSM) data,
which provides non-refractory sub-micron aerosol
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composition (i.e., ammonium, chloride, nitrate, organ-
ics, and sulfate); we primarily focus on the organic
aerosol (OA) in this work. We use the derived SAE
and AAE to interpret our results within the context of
the “AAE-SAE” space proposed by Cazorla et al.
(2013) and updated by Cappa et al. (2016), which can
be used to estimate the type(s) of absorbing aerosols
that are present in a given sample. For example, a
sample that is dominated by mineral dust is expected
to have high AAE yet low SAE, while a sample that is
dominated by brown carbon (BrC) is likely to have
both high AAE and high SAE. Furthermore, we use
observations of Bscat and Babs to derive values of sin-
gle-scattering albedo (SSA), the ratio of light scatter-
ing to total light extinction (light scatteringþ
light absorption).

In Figure 1, we present SAE and AAE data from
TCAP (split into the training and test sets in panels
(a) and (b), respectively) and CACTI (panel (c)),
along with the classification scheme updated by
Cappa et al. (2016) in panel (d). The markers in each
of the panels represent hourly averages and are col-
ored based on the ratio of the predicted MACBC at

870 nm from the SVM model to the empirically
derived MACBC; if agreement falls within a factor of
two (i.e., a ratio between 0.5 and 2.0, a subjective
assessment), the values are grayed out to highlight dis-
crepancies outside of this range (i.e., subjectively poor
agreement). The square marker and error bars in the
panels represent the mean and standard deviation of
AAE and SAE for each dataset. When comparing
across the three datasets, we note that the mean values
of AAE and SAE at TCAP (1.54 and 1.36, respect-
ively) are greater than those at CACTI (1.32 and 1.15,
respectively). In addition, the CACTI data has large
variations in SAE but smaller variations in AAE than
the TCAP data. Complementary figures for the other
models are presented in the online supporting infor-
mation (Figures S1–S3). These figures provide a quali-
tative means of investigating how our models’
performance may vary on different ambient datasets
with different types of absorbing aerosols present.

There are few colored markers for the data in
Figures 1a and S1, suggesting that the models can pre-
dict the majority of these hourly averaged MACBC val-
ues from TCAP within a factor of two; this is not

Figure 1. Hourly averaged AAE vs. SAE with points colored by the ratio of the SVM-predicted MACBC to the value derived from
empirical observations for (a) training data; (b) test data; and (c) independent validation data. In panels (a)–(c), the square marker
and error bars indicate the mean and standard deviation of the dataset; the filled circles represent over-predictions, and the filled
triangles represent under-predictions. The classification scheme presented in Cappa et al. (2016) is shown in panel (d); this is over-
laid onto panels (a)–(c).
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surprising because Figures 1a and S1 represent the
training data for the models. This same observation
holds true for Figures 1b and S2, which represent the
test data from TCAP. However, for the CACTI data
(Figures 1c and S3), more coloration appears, espe-
cially when SAE < 1; values tend to be over-predicted
when SAE falls between 0.5 and 1.0 (the yellow region
in Figure 1d), and they tend to be under-predicted
when SAE < 0.5 (the brown region in Figure 1d).
This is another result that is not entirely surprising,
because there were relatively few observations for SAE
< 1 and AAE < 1.5 in the training data. A compari-
son to the classification scheme in Figure 1d suggests
that a substantial amount of large particles were pre-
sent during the CACTI campaign, implying that our
models for predicting MACBC may have limitations
when, for example, mineral dust may dominate aero-
sol light absorption.

We next examine the association between model
accuracy and measurements of aerosol composition.
In Figure 2, we explore the influence of the mass con-
centrations of OA (from the ACSM) and BC (from
the SP2) as well as SSA. The y-axis in each panel rep-
resents the ratio of the predicted MACBC at 870 nm
from the model to the empirically derived value. In
the top row, markers represent data from the TCAP
campaign and are colored based on their inclusion as
either training or test data; in the bottom row,

markers represent data from the CACTI campaign
and are colored based on date of collection. For the
TCAP data, results are roughly normally-distributed
about unity on the y-axis, with no clear systematic
biases (cf., Table 4 and Figure 3 in Li and
May [2020a]).

However, there is an apparent systematic bias in
the CACTI data. The ratios tend to be less than unity
at both the beginning (1 Dec 2018 through 3 Dec
2018) and the end (17 Dec 2018 through 21 Dec
2018) of the time-series data, which corresponded to
OA concentrations less than roughly 3 mg m�3 and
BC concentrations less than roughly 0.05 mg m�3;
otherwise, the values tend to be biased high.
Interestingly, the association between OA and BC
concentrations (Figure S4) during CACTI is fairly
strong (Pearson’s correlation coefficient r¼ 0.71),
while this relationship is weak during TCAP
(r¼�0.09). The exact reason for this difference in the
association between OA and BC between the two
campaigns is unclear, but it may be related to differ-
ences in aerosol sources. For example, TCAP was
likely dominated by marine aerosols and aerosols
transported from continental North America
(Kassianov et al. 2014) with a strong influence from
aerosol hygroscopic growth (Titos et al. 2014). While
we are unaware of any existing publications describing
the source of the aerosols observed during CACTI,

Figure 2. The ratio of the SVM-predicted MACBC to the value derived from empirical observations of MACBC as a function of (a)
OA concentration; (b) BC concentration; and (c) SSA at 870 nm for the TCAP and CACTI data. The dashed line represents that the
model fits MACBC.true without error.
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earlier work by Camponogara, Silva Dias, and Carri�o
(2014) suggests that the aerosols during this campaign
likely originated from local sources, including biomass
burning and wind-blown dust.

Moreover, meteorological conditions during the
CACTI campaign favored convective storm develop-
ment on some days (Schumacher et al. 2021; Varble
et al. 2021), which is why the specific field site was
selected. In fact, Schumacher et al. (2021) report lower
maximum daily values of the most unstable convective
available potential energy (MUCAPE), precipitable
water, and vector wind difference (VWD) during the
beginning and the end of the measurement period
included in Figure 2. Schumacher et al. (2021) high-
light that 13 Dec 2018 through 14 Dec 2018 had one
of the largest MUCAPE/VWD combinations, which
suggests the potential for severe convective storms.
The presence of mesoscale convection may support an
argument that the presence of wind-blown dust can
result in the degradation of our models’ performance.

In addition to the variability of particle sources and
meteorological conditions, we estimate that the BC
particles at CACTI tend to have greater coating thick-
ness than those at TCAP in complementary work (Li

and May 2022); the accuracy of the machine learning
models can be reduced by up to 50% if the ratio of
coating mass to BC mass is greater than 20.
Nevertheless, all of our models were able to predict
the majority (>80%) of the empirically derived
MACBC series within a factor of two, and they were
generally able to capture temporal trends within
those values.

Biomass burning aerosols
For the laboratory biomass burning aerosols (FIREX),
we again interpret our data using the key optical param-
eters of aerosols (i.e., the AAE-SAE space and SSA). We
did not have an ACSM co-located with our instrumen-
tation (see Li et al. [2019] for details), but we do have
organic carbon/elemental carbon (OC/EC) data from
an offline Sunset Laboratories Lab OC/EC Aerosol
Analyzer. Moreover, we have estimates of aerosol light
absorption enhancement (Eabs) and a parameter repre-
senting the BC mixing state, both of which were derived
from SP2 measurements, in these FIREX data; a value
of 0 for the mixing state parameter indicates a pure
external mixture, while a value of 1 indicates a pure
internal mixture. Rather than time-series data, we

Figure 3. Association between the ratio of the SVM-predicted MACBC to the value derived from empirical observations to aerosol
properties from the FIREX study. (a) The “AAE-SAE” space as in Figure 1; (b) SSA at 528 nm; (c) SSA at 870 nm; (d) the OC/EC ratio;
(e) estimated Eabs; and (f) estimated mixing state. The dashed line in panels (b)–(f) represents a perfect agreement.
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present fire-integrated results for these data. Figure 3
illustrates the performance of the SVM model (see
Figures S5–S6 for the other models).

In Figure 3a, no strong patterns related to biases in
the SAE-AAE space emerge, suggesting that even
though our training data did not contain a strong
presence of BrC, the SVM model still exhibits good
performance. Interestingly, the FIREX data do suggest
an association between SSA and the ratio of the pre-
dicted MACBC at 870 nm from the model to the
empirically derived value at both 528 nm (Figure 3b)
and 870 nm (Figure 3c). A weaker association exists
between the predicted-to-empirical MACBC ratio and
the OC/EC ratio (Figure 3d), as we do not have OC/
EC data for all fires, but there is no association
between the predicted-to-empirical MACBC ratio and
the absolute BC mass concentration from the SP2
(Figure S7). These observations for the FIREX data
from Figures 3b–d and S5–S7 are in apparent direct
contradiction to Figures 2d–f representing the CACTI
data. However, the estimated aerosol light absorption
enhancement (Figure 3e) and BC mixing state

parameter (Figure 3f) mirrors the trends in Figures
3b–d, which is not surprising since SSA and the mix-
ing state parameter are associated (Figure S8).
Therefore, given the lack of a trend with SSA in
Figure 2f, we postulate that BC mixing state, which
will influence aerosol light absorption enhancement, is
a key driver of biases in our models. Our SVM model
appears to be the least sensitive to mixing state (e.g.,
compare Figure 3f with Figures S5–S6), as it predicts
roughly 87% of the fire-integrated MACBC values
within a factor of two. We further examine the influ-
ence of BC mixing state and aerosol light absorption
enhancement in our companion study that incorpo-
rates physics-based light scattering modeling techni-
ques into our analysis (Li and May 2022).

Sensitivity to varying model inputs

In addition to variations in aerosol composition that
differ from the training dataset for our models, some
observational sites may lack all of the input data
required for our models. We consider here eight

Figure 4. Statistical results of sensitivity analysis. The results of CNN applied to Case 3(a) and Case 3(b) for CACTI result in extreme
prediction errors, so they fall outside of axis limits. The detailed results of R2, MSE, and fractional bias and error can be found in
Tables S1 and S2. Note the different scales in panels (a) and (b).
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unique cases, all of which have practical implications,
as summarized in Table 1. Case 1(a) is an exact repro-
duction of how we developed our models in Li and
May (2020a) and serves as our base case, while Case
2(a) re-partitions the particle size distribution parame-
ters using different electrical mobility diameter thresh-
olds. Case 3(a) considers a scenario when only an
SMPS (or equivalent) is available for particle sizing,
and Case 4(a) considers a scenario when only an APS
(or equivalent) is available for particle sizing. All cases
denoted with a (b) consider only a single wavelength
of Babs and Bscat measurements but are otherwise
identical to the analogous case denoted with an (a).
Results in this section focus on the TCAP and CACTI
datasets; we have effectively tested Case 3(a) in the
previous section for the FIREX data, since only SMPS
particle size distribution data were available during
that campaign.

When conducting the sensitivity analyses, we dir-
ectly input the variables generated by the cases pre-
sented in Table 1 to the trained models, and then
compared the predicted MACBC against the empirical
values of MACBC. Figure 4 presents a summary of the
model performance metrics: R2, MSE, fractional bias,
and fractional error. As expected, this sensitivity ana-
lysis demonstrates that our models consistently per-
form worse on the TCAP data when inputs differ
from the base case across all metrics. However, even
though R2 (Figure 4a) and MSE (Figure 4c) may differ
by up to a factor of four from the base case in these
TCAP data, most of the models can be still considered
to be “excellent” with respect to fractional bias and
fractional error (Figure 4e) based on the criteria estab-
lished by Morris et al. (2005). Interestingly, for the
CACTI dataset, all of the sensitivity analyses have
similar (and sometimes improved) performance rela-
tive to the base case (Figures 4b, d, and f).

We can draw one important conclusion from
Figure 4 and Tables S1–S2: the SVM model appears
to be the least sensitive to changes in the input

variables. For example, in Figures 4e and 4f, the SVM
results (circles) tend to be clustered more tightly
together for the sensitivity cases relative to the ANN
(squares) and CNN (triangles) results for both data-
sets. The lower sensitivity of SVM is attributable to
the inherent nature of the SVM training process.
Fundamentally, the SVM approach selects a subset of
observations from the training dataset as “support
vectors” to define the margins of hyperplanes for the
model (and to discard “unwanted” data samples),
which makes the model robust to data noise and
applicable to datasets with substitution of input varia-
bles. Therefore, even if input data are missing relative
to the training data, this model can still perform rea-
sonably well. This analysis supports our previous rec-
ommendation for the use of the SVM model for
predicting MACBC from empirical data.

Conclusions and extensions

We have expanded upon the evaluation of our
machine learning models that were developed to
calculate MACBC based on multi-wavelength Babs,
multi-wavelength Bscat, and parameterizations of both
particle number and particle volume size distributions.
Specifically, we considered the influence of varying
composition and the effect that this has on the accur-
acy of our model predictions. While our machine
learning models generally perform well, there are
some scenarios for which their performance degrades.
When mineral dust (Figure 1c) or externally mixed
BC (Figure 2f) particles dominate aerosol light absorp-
tion, the bias in the models can exceed a factor of
two. Therefore, MACBC predictions with our models
for observational sites influenced by wind-blown dust
or freshly generated BC particles may be prone to
errors, because our models are extrapolating for those
calculations. However, two advantages of our models
are that they do not require assumptions on aerosol
composition or mixing state (e.g., as in physics-based

Table 1. Input variables considered in our sensitivity analyses. Multiple-k includes information at 467, 528, and 652 nm, while sin-
gle-k only includes information at 528 nm. Values within the Ni and Vi columns represent the bounds of the particle size range
(as electrical mobility diameter).

Babs & Bscat N1 (nm) N2 (nm) N3 (nm) V1 (nm) V2 (nm) V3 (nm) Notes

Case 1(a) Multiple k < 50 50� 200 > 200 < 1000 1000� 2500 > 2500 SMPS and APS: 11.3� 18,747 nm
Case 1(b) Single k Same as Case 1(a)
Case 2(a) Multiple k < 100 100� 300 > 300 < 500 500� 1500 > 1500 Repartitioning of size bins from Case 1(a)
Case 2(b) Single k Same as Case 2(a)
Case 3(a) Multiple k < 100 100� 1000 – < 500 500� 1000 – Emulating only an SMPS for sizing (< 1000 nm)
Case 3(b) Single k Same as Case 3(a)
Case 4(a) Multiple k – 440� 600 > 600 – 440� 2500 > 2500 Emulating only an APS for sizing (> 440 nm)
Case 4(b) Single k Same as Case 4(a)
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light scattering models) and that they can capture
temporal variations in MACBC (unlike the constant,
standard assumption of MACBC); we specifically com-
pare our SVM model to these other approaches in a
companion study (Li and May 2022).

We envision several extensions to our work that
either we or other researchers may pursue in the future.
We have focused on the development of a generalizable
model that may be applied to any site globally. However,
there may be specific applications of our model that are
very different from our original training dataset (cf.,
Table 1 in Li and May [2020a], Figure 1a above), which
lead to poor model performance. To overcome this issue,
one could re-train our model using a dataset represent-
ing a more diverse aerosol population that is more
widely generalizable. Alternatively, one could conduct
short-term intensive field campaigns to develop site-spe-
cific machine-learning models; this would also provide
additional data that could be used to evaluate our gener-
alized model. Moreover, we have developed three pre-
processing modules that enable users to process raw
observations into the required data format used in our
model. Our existing modules may be useful in stand-
alone applications. Likewise, we focused on these three
as they served our needs in the development of our
machine-learning models, but extensions to our work
could lead to the development of additional modules.
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Additional figures and tables are available with the online
publication. Computer code is available from https://zen-
odo.org/record/3967833. The TCAP and CACTI aerosol
products are available at https://www.archive.arm.gov/dis-
covery/. The FIREX data are available at https://www.esrl.
noaa.gov/csl/projects/firex/firelab/.
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